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OVERVIEW 

Since we began this work with Muskwa-Kechika seed funding in 2000, there have been 

several changes in the way in which wildlife suitability models are developed in British 

Columbia.  On the positive side, there is now some recognition among those that develop the 

modeling tools, that consideration needs to be given to understanding the effects of variation in 

expert opinion, and assumptions, on the predictions of the models.  In addition, there is now a 

much more flexible framework in which to build different assumptions about habitat-species 

interactions on model predictions.  Concurrently, however, the thrust to simultaneously develop 

models that rank wildlife habitat for vast expanses of British Columbia, in particular various 

management zones of the Muskwa-Kechika MA, has meant basing models on less-exact PEM 

maps and in further automation of the mapping process.  We still do not have a method to 

explore the effects of proposed landscape-level perturbations on spatially explicit wildlife-

suitability models. 

Expert opinion is frequently used to aid decision making.  When species are difficult or 

expensive to monitor, experts’ knowledge often serves as the foundation for habitat suitability 

models and maps produced from these models.  Across British Columbia, expert-based habitat 

suitability models currently help guide resource planning and development.  Despite the long 

history and wide-spread use of expert-based models, there has been little recognition or 

assessment of uncertainty in predictions.  Between 1 December 2003 and 30 June 2004, we 

developed a test model for caribou using the spatial data from the Graham/Halfway PEM and the 

caribou Habitat Ratings model.  We used this model to investigate the spatially explicit 

implications of acknowledging uncertainty in these wildlife habitat rating (WHR) models.  Our 

model allowed us to examine variation for all parameters in a WHR model.  We used simulations 

to identify the most sensitive parameters in the WHR model, the precision of ratings for a 

number of ecosystem units, and variation in the total area of high-quality habitats due to 

uncertainty in expert opinion.  The greatest uncertainty in habitat ratings resulted from 

simulations conducted using a uniform distribution (high uncertainty) and a standard deviation 

calculated from the range of possible scores for the model attributes.  For most ecological units, 

the mean score, following 1000 simulations, varied considerably from the reported value.  When 

applied across the study area, assumed variation in expert opinion resulted in dramatic decreases 
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in the geographic area of high- (-85%) and moderately high-quality habitats (-68%).  The 

majority of habitat polygons could vary by up to one class (85%) with smaller percentages 

varying by up to two classes (9%) or retaining their original rank (7%).  Results from our current 

simulations suggest that even simple expert-based predictive models can be sensitive to variation 

in opinion.  The magnitude of uncertainty that is tolerable to decision making, however, will vary 

depending on the application of the model, which contains more details on our analyses.   

Decisions makers continue to need tools to aid in landscape-level planning.  Therefore, 

they must not only be aware of the shortcomings of the tools that they are currently using, but 

they must also understand the strengths and weaknesses of alternative approaches.  As part of 

this report we explore some of the strengths and weakness of alternative methodologies for 

understanding the important of landscapes to wildlife species.  We believe that it is important 

that multiple approaches continue to be explored – a process that continues to be limited by 

government requirements that all contracted habitat mapping use a prescribed system that many 

government biologists choose not to use (see Gillingham 2001). 

This document is a final report for our Muskwa-Kechika Management Trust funded 

project.  It primarily focuses on a summary of our work on the mapping of sensitivity of wildlife 

habitat ratings models (Johnson and Gillingham 2004), but also explores issues of error and 

uncertainty with other approaches to mapping wildlife-habitat use1. 

                                                 
1 Johnson, C,J., and Gillingham, M.P. Sensitivity of predictive species distribution models to imprecise data and 

model design. In Review. 

Johnson, C,J., and Gillingham, M.P. Predictive accuracy and interpretation of mapped species distribution models. 
In Review. 

 



4 

BACKGROUND 

Due to the limited resources available for widespread, intensive population inventories, 

and the time frame imposed by the pre-tenure planning process, management decisions within 

the Muskwa-Kechika pre-tenure planning areas will continue to rely heavily on the concept of 

wildlife habitat suitability and preclude the use of other more detailed approaches such as 

resource selection functions (e.g., Boyce et al. 2001; Manly et al. 2002), and other forms of 

logistic regression (e.g., Massolo and Meriggi 1998) to discern between suitable and unsuitable 

habitats for specific species.  The planning process will continue to be informed by species-

specific research (e.g., Parker 2003), but development decisions at the landscape level are 

progressing much faster than species-specific research can continue to inform. 

In using a habitat modeling approach for pre-tenure planning, however, participants in the 

pre-tenure planning process should be aware of the accuracy, reliability and sensitivity of current 

wildlife suitability approaches and models and how the specific models used in the Muskwa 

Kechika differ from those used in other parts of British Columbia (Resources Inventory 

Committee (RIC) 1999) and throughout North America.  Since the early 1980's a variety of 

habitat-based models have been developed for use in large-scale landscape planning.  The 

impetus for building these models was the need to develop tools for examining potential impacts 

of habitat manipulations on specific wildlife species – tools that did not necessarily require 

accurate population-based models for individual species.  In these original models (United States 

Fish and Wildlife Service [USFWS] 1980), habitat units were used to compare the relative value 

of different areas at a point in time and the relative value of the same area at future points in time 

( USFWS 1980).  Many of these models have been adapted for use in a variety of habitat types 

through the United States and  Canada (e.g., American marten (Martes americana): Allen 1982; 

Takats et al. 1999).  This approach has also been applied to a wide range of vertebrate species 

including species of fish and birds (Cade and Sousa 1985; Conway and Martin 1993) in addition 

to mammals (Gabler et al. 2000; Zeigenfuss et al. 2000; Boroski et al. 1996; Thomasma et al. 

1991).   

Quantitative habitat models and predictive distribution maps are now important tools for 

the conservation and management of animals and plants (Guisan and Zimmerman 2000; Pearce 

and Ferrier 2001; Raxworthy et al. 2003).  The wide-spread application of these models is a 
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function of the availability of geographic information system (GIS) data and the ready 

availability of computationally intensive numerical techniques.  In many instances, however, 

decision making is often guided by expert opinion.   

In its simplest form, a habitat suitability index (HSI) is an equation of an additive, 

multiplicative or logical form with coefficients representing the relative value of environmental 

features.  Typically, coefficients are scaled between 0 and 1 and are estimated using best 

available knowledge as surveyed from experts or published literature.  Depending on the 

definition of habitat suitability, model predictions can represent environmental carrying capacity, 

reflected by population density, biomass per unit area or more simply patch occupancy (e.g., 

Schroeder and Vangilder 1997; Oldham et al. 2000; Loukmas and Halbrook 2001).  In 

conjunction with a GIS and data representing the spatial distribution of model inputs, HSI 

equations can be used to generate maps of ranked habitat units (e.g., Li et al. 2002; Store and 

Jokimaki 2003).   

A model that poorly reflects perceived or actual conditions, however, will not only fail as 

an evaluation or guidance tool, but may result in misplaced resources or harmful conservation 

and management actions (Loiselle et al. 2003).  HSI models, as an example, are ubiquitous in the 

management and conservation arenas yet they are infrequently validated and the criteria and 

approaches for validation may be questioned (Roloff and Kernohan 1999).  Because expert-

based approaches are typically a response to no or poor-quality data it is not surprising that HSI 

models are infrequently validated following conception.   

An alternative to validation is uncertainty (UA) and sensitivity analyses (SA).  

Uncertainty analysis and sensitivity analysis allow the user to quantify the range and distribution 

of predictions and identify data, model structure or parameters that require improvement 

(Crosetto et al. 2000).  Failing to quantify and understand the variation in model predictions due 

to uncertainty can lead to assumptions about data accuracy and output that are not valid and 

ultimately impact management practices and decisions (Regan et al. 2002).  Variation in expert 

opinion, however, is often difficult to quantify.  A variation of the Delphi technique is often used 

(e.g., Crance 1987) in which experts are polled on a series of questions; the responses are 

tabulated, analyzed and fed back to the experts and then the experts reanswer the questions in 

light of the information in the aggregate responses.  This approach could seemingly be employed 
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to also to quantify the variation on the ‘value’ by various users and experts alike. In order to be 

able to examine model sensitivity to assumptions, however, the sources of error in a model must 

be made explicit. 

In our work, we used Monte Carlo simulations to assess the degree of uncertainty and 

identify sensitive parameters for habitat classifications and associated maps generated from 

expert opinion.  We applied simulation-based uncertainty and sensitivity analyses to wildlife 

habitat ratings mapped for a 2400-km2 area of British Columbia currently subject to pre-tenure 

planning.  We focused on quantifying the magnitude and sources of uncertainty for ratings of one 

species during one season.  Simulation results revealed the most sensitive parameters in the 

ratings model, the precision of wildlife habitat ratings for a number of ecosystem units, and 

variation in the total area of high-quality habitats due to uncertainty in expert opinion.  As a tool 

to aid decision making, we generated a map of uncertainty in wildlife habitat ratings.   

Ecosystem mapping and wildlife habitat ratings 
Across B.C., ecosystem mapping (EM) is the most current source of ecological and 

habitat information for resource development planning.  Maps portray large-scale (1:20,000-

1:50,000) ecological units developed within a hierarchical framework of climate, topography, 

vegetation, and soil attributes (PEM Data Committee 2000).  For each ecosystem mapping area, 

project proponents identify important wildlife species and biologists, often under contract, 

develop relative habitat ratings for ecosystem units according to expert opinion, limited field 

investigations, and existing literature describing habitat relationships.  Ratings tables are then 

used to assign and summarize index scores for the model attributes that identify ecosystem 

mapping ecological units.  Scores range from 0 to1 and serve as a relative index of an attributes 

contribution to the value of an ecosystem unit as seasonal habitat for a particular species; when 

combined, scores serve as an overall Resource Suitability Index (RSI).  Resource Suitability 

Indices are similar to HSI except the former accommodates a greater range of potential 

environmental attributes.  There have, however, been few efforts to determine the degree of 

uncertainty in ecosystem unit designations or wildlife habitat ratings.   

There is no standard for combining index scores; however, a linear multiplicative model 

is common.  As the final step in the habitat rating process, index scores are classified for 

mapping purposes; typically, a six-, four-, or two-class scheme is used.  Ecosystem mapping 
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polygons potentially represent three ecological units where the percent area of each unit is 

specified as a decile.  When mapping habitat rating classes, one can choose to represent the 

average score, the highest score irrespective of decile, or the score that occupies the greatest 

percentage of the polygon.   

Uncertainty and sensitivity analysis 
Typically, uncertainty analysis is conducted as a simulation, where one runs a model 

multiple times and recalculates the predicted outcome for each systematic perturbation of the 

input variables.  Input can vary in many ways, but is usually sampled from a distribution of 

values with known properties.  Following the simulation, the variation in outcomes indicates the 

level of uncertainty in model predictions one might expect given a known or assumed 

distribution of scores for the input data.  Uncertainty analyses allow us to consider all sources of 

uncertainty simultaneously and determine if the model and input data reliably support the 

decision process.  Sensitivity analysis works in the opposite direction, revealing model 

components or data with the greatest influence on the variation in predictions.  A range of 

statistical techniques (e.g., linear regression, correlation analyses, sensitivity indices, etc.) are 

available for performing sensitivity analysis (Saltelli et al. 2000).  Although uncertainty analysis 

is more prominent in the field of GIS-based modeling, uncertainty analysis and sensitivity 

analysis are complementary approaches that provide support for model predictions and highlight 

areas where assumptions need to be addressed and source data improved or augmented (Crosetto 

and Tarantola 2001). 
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MODELING APPROACH 

Ecological mapping and associated wildlife habitat ratings assisted a planning process 

designed to minimize the impacts of oil and gas exploration on 11 regionally and provincially 

significant wildlife species (EBA Engineering 2002a).  The ecosystem mapping project was 

conducted between February 2000 and March 2002 for four geographically distinct planning 

areas that covered approximately 1.2 million ha of the Muskwa-Kechika Management Area 

(MKMA; EBA Engineering 2002a).  Ecosystem units range in elevation from 420 m across 

valley bottoms to a maximum elevation of 2840 m across alpine areas.  A wide variety of 

forested, wetland, nonforested, and alpine vegetation communities are found across the study 

area (EBA Engineering 2002a).  For mapping and wildlife habitat ratings purposes, the 

Biogeoclimatic Ecosystem Classification (BEC) system was used to hierarchically stratify 

vegetation associations according to progressively finer scales of climate, soils, and site 

conditions (Meidinger and Pojar 1991).  Four BEC zones, the coarsest unit of ecological 

stratification, occurred across the planning area.  In our work we focused our analyses on the 

ratings for woodland caribou (Rangifer tarandus caribou) habitat during the spring season. 

Uncertainty and sensitivity analyses 
We used a Monte Carlo simulation to perform uncertainty analysis and sensitivity 

analysis for wildlife habitat ratings from a sample of ecological units found across the MKMA 

ecosystem mapping.  We selected three units representing low, mid, and high RSI scores for each 

of the four BEC zones found across the study area.  Attributes defining that model included 

BEC, site series, structural stage, and site modifier (EBA Consulting 2002b; Equation 1).  In a 

hierarchical fashion, BEC represents a multi-ecosystem-unit description of climate, site and soil 

conditions; site series describes climax vegetation for a particular ecosystem unit; structural stage 

represents the successional stage of the ecosystem unit; and site modifier describes atypical 

occurrences of the site series with respect to variation in topography, moisture, soil, and soil 

characteristics (PEM Data Committee 2000).   

RSIcaribou/spring  = BEC × Site Series × Structural Stage × Site Modifier (Equation 1) 

Perturbations introduced during a Monte Carlo uncertainty analysis should represent the 

range of reasonable assumptions about the nature of uncertainty expected from the model or 
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source data.  Those assumptions are explicitly defined by a statistical probability distribution 

from which the source data are sampled.  The analyst must choose the appropriate distribution 

and define parameters such as the mean and standard deviation that shape the distribution.  For 

this project, only a single score was reported for each attribute in a ratings table.  The wildlife 

habitat rating process did not allow an evaluation or provide an estimate of divergence in expert 

opinion.  Therefore, we could not empirically define the distribution of index scores or the 

variance in scores.  As an estimate, we used the index score reported for each ecological unit to 

define the hypothetical mean value of the distribution of scores.  To cover the possible range of 

opinions from which index scores may have occurred, we performed the uncertainty analysis 

using two probability distributions and three different calculations of variation in ratings.   

For each of the 12 ecological units subjected to uncertainty analysis, we sampled scores 

for the Monte Carlo simulations from a triangular and uniform distribution.  A triangular 

distribution is defined by a minimum, mid, and maximum value with sampled index scores 

having a higher probability of selection as they approach the mid score.  The uniform distribution 

is defined by the minimum and maximum extent with all scores between those two points having 

an equal probability of being sampled.  The parameters for each distribution were taken from the 

reported data.  The midpoint for the triangular distribution was the reported score and the extents 

of both distributions were calculated as ±1 standard deviation from the midpoint.  Standard 

deviations were calculated in one of three ways for each RSI model attribute: from the range of 

scores contained within a ratings table; from the ratings for the attribute across all ecological 

units; and from the ratings for the attribute across ecological units found within each of the four 

BEC zones.  In the latter case, the value of the standard deviation was specific to BEC zone, 

whereas in the former two cases the standard deviation was calculated from and applied across 

all zones.  Johnson and Gillingham (2004) report on the details of the approaches to quantifying 

and exploring uncertainty and sensitivity in wildlife habitat ratings.   

We also constructed a simulation program (Visual Basic) to produce analyses of the 

change in the area and ranking of habitats resulting from uncertainty in estimates.  The first 

component of this model allowed us to rigorously check all polygon estimates against those 

supplied by the actual caribou model (EBA Consulting 2002b; Figure 1).  The model then 

enabled us to run sensitivity analyses on a range of options for model calculations (Figure 2).  

For each of the 4736 polygons found across the most southern planning area, the Visual Basic  
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Figure 1. Screen capture of the query interface of our Visual Basic model for woodland caribou 
in spring, which enabled us to check our simulation model against the model developed 
for the pre-tenure planning process. 

 

Figure 2. Screen capture of the simulation interface of our Visual Basic model for woodland 
caribou in spring, which enabled us to simulate methods of combining polygon 
components, to specify types of variation, and to set thresholds for high-quality habitat. 
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program simulated 100 RSI scores and estimated the variation in area of moderate- and high-

quality habitat across model runs and the potential range of ratings for each polygon (mean ±1 

standard deviation).  Area of habitats and ratings overlap was considered in the context of a six-

class wildlife habitat ratings scheme.  For simulation parameters, we looked to the first set of 

uncertainty analysis and used the combination of distribution and standard deviation that 

generated the smallest and largest levels of uncertainty.  Because ecosystem mapping polygons 

potentially represent three ecological units, we performed the uncertainty analysis considering 

the average and the largest RSI score as well as the decile with the greatest area.   

RESULTS 

Mean RSI scores summarized from 1000 Monte Carlo simulations for 12 sample 

ecological units demonstrated considerable divergence from the expert scores (Figure 3).  In 

general, uncertainty was greatest for simulations conducted using a uniform distribution and a 

standard deviation defined by the range of possible scores for the model attribute.  Alternatively, 

we observed the smallest variance for simulations conducted with a triangular distribution and a 

standard deviation defined by the observed scores within each BEC zone.  The initial expert’s 

attribute score influenced the magnitude of uncertainty and the mean simulated score.  Typically, 

ecological units with scores near 1 were consistently biased toward 0 (Figure 3).   

The introduction of uncertainty in expert opinion led to variation in the ranking and 

geographic area of polygons falling within one of the six habitat classes.  Across all 

permutations, a uniform distribution with a RSI defined by the largest decile resulted in the 

greatest uncertainty in polygon rating.  Using a six-class rating system, the mean RSI score ±1 

standard deviation indicated that 4007 polygons could vary by one wildlife habitat rating class 

and 407 polygons could vary by two classes (Table 1).  Results were less extreme for the 

triangular distribution where 1877 polygons varied by one rating class.   

The method of incorporating RSI scores across deciles did not have a large influence on 

variation in the total amount of high- and moderately high-quality habitats (Table 2; Figure 4A).  

In contrast, the introduction of uncertainty in expert opinion resulted in dramatic changes in the 

percentage area of class 1 and 2 habitats.  Relative to the area of habitats calculated using the 

unperturbed model, we observed an 85 and 68% reduction in high- and moderately high-quality 

habitats after introducing uniformly distributed uncertainty averaged across deciles (Table 2; 
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Figure 3. Uncertainty in estimates of resource suitability indices (●) for three ecological units found within the Alpine Tundra, Spruce 
Willow Birch, Boreal White and Black Spruce, and Engelmann Spruce Subalpine Fir Biogeoclimatic Ecosystem Classification 
Zones.  A Monte Carlo simulation was used to estimate uncertainty given a triangular (▲) and uniform (■) distribution of 
estimates and variances calculated from the range of possible scores for the model attribute (□), observed scores across all 
BEC zones (■), and observed scores within each zone (■).  
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Table 1. Number of habitat polygons with a sufficient level of uncertainty to fall within one or 
more adjacent rating classes.  Uncertainty in expert opinion was represented by two 
distributions (Uniform, Triangular) and three methods for combing polygon deciles: the 
weighted average RSI score across deciles, the score from the largest decile, and the 
highest score from among the three deciles.  For each polygon we used the mean RSI 
score ±1 standard deviation to determine overlap with adjacent rating classes.  
 
 
 
 
 

Class 
Overlap 

Average RSI 
Score 

Largest Decile Largest RSI Score 

 Uni Dist Tri Dist Uni Dist Tri Dist Uni Dist Tri Dist 
0 559 3040  322 2859  330 2929

1 3873 1696  4007 1877  4009 1807

2 304 0  407 0  397 0
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Table 2. Variation in area (km2) of high- and moderately high-quality habitat due to simulated 
uncertainty in expert opinion.  Uncertainty was represented with uniform (Uni) and 
triangular (Tri) distributions and three methods for combining polygon deciles: the 
weighted average RSI score across deciles (Average), the score from the largest decile 
(Largest), and the highest score from among the three deciles (Highest).  
 
 
 
 
 

Polygon scores calculated by 
combining deciles according to: 

Area SD 
Area

Minimum 
Area 

Maximum 
Area 

% 
Change 

Average Score      

   No Uncertainty 39.3 – – – – 

   Uniform Distribution 5.8 2.6 1.0 12.1 -85.2 

   Triangular Distribution 32.6 4.0 22.8 44.2 -16.9 

Largest Decile      

   No Uncertainty 37.2 – – – – 

   Uniform Distribution 7.8 3.0 2.2 19.5 -78.9 

   Triangular Distribution 33.7 4.3 24.3 42.2 -9.4 

Highest Score      

   No Uncertainty 45.3 – – – – 

   Uniform Distribution 8.8 3.1 2.9 19.1 -80.6 

   Triangular Distribution 40.9 5.2 29.1 53.5 -9.7 
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Figure 4. Wildlife habitat ratings for the most southern planning unit of the Muskwa-Kechika Management Area, northeastern British 
Columbia (A) and simulated variation in ratings given uncertainty in expert opinion (B).  Maps were constructed using the 
largest decile for each habitat polygon and simulated scores were draw from a uniform distribution with a standard deviation 
defined by the range of possible scores for each model attribute. 
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Figure 4B).  Results were less extreme following application of the triangular distribution: area 

of class 1 and 2 habitats differed by 17 and 32%, respectively, when compared to the RSI habitat 

ratings for the published model (Table 2).   

DISCUSSION 

Wildlife Habitat Ratings Models 
Expert opinion is an important source of information for conservation and resource 

management decision making.  In contrast to the inferences from specific empirically-based 

research studies, experts can provide a synthesis perspective drawing on their own observations 

and those presented as published data.  Costs of monitoring wide-ranging or rare species also can 

be time consuming and prohibitively expensive (Johnson et al. 2002).  In some cases, we have 

only the knowledge from experts to guide conservation and management initiatives (Pearce et al. 

2001).  Furthermore, conservation biology is a crisis discipline.  Initiatives designed to halt the 

decline, extirpation or extinction of a species often cannot wait for the development, funding, 

implementation, and conclusion of empirically-based research or monitoring studies.   

The lack of uncertainty analysis and sensitivity analysis for expert-based models may 

partially be a function of how expert opinion is solicited.  Inherent within a Monte Carlo or other 

simulation approach is an estimate of variability in model parameters, in this case, stemming 

from differences in expert opinion.  If only one expert is consulted or a process is used that 

builds consensus among experts without recording differences, we must assume the shape and 

type of probability distribution.  For our analyses, only point estimates were reported for each 

model parameter for each ecological unit.  Lack of measured variation forced us to assume a 

range of plausible distributions.  Uncertainty and sensitivity analysis are more realistic and 

defensible when simulated values are drawn from distributions defined by a sample of repeated 

observation.  In most cases, however, it is unlikely that enough experts would be available for 

identifying the frequency distribution of opinions on any one question.  Nonparametric 

bootstrapping is an alternative to Monte Carlo simulations where statistical parameters are 

difficult to identify (Efron and Tibshirani 1993).  Researchers have championed the iterative and 

interactive modified Delphi approach as an approach for soliciting and defining levels of 

agreement between experts (Uhmann et al. 2001, Hess and King 2002).  We are uncertain, 
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however, if divergence in opinion should be considered after the first or last round of expert 

consultation.   

In situations where uncertainty in expert opinion cannot be quantified we encourage 

researchers to test a range of possible uncertainties.  Repeating analyses for a full range of 

plausible distributions reveals the sensitivity of the uncertainty analysis to underlying statistical 

parameters.  For each ecological unit, we calculated the standard deviation in index scores three 

ways and applied that parameter to two statistical distributions.  Our choice of methods was a 

function of the available data.  We assumed that the variance in expert opinion and thus 

uncertainty increased with the range of possible scores for each attribute and the diversity of 

ecological units across BEC zones.  Selection of distribution was largely arbitrary; however, our 

guiding criterion was distributions constrained to generate values between 0 and 1.  A triangular 

distribution is more conservative and assumes that expert opinion is centred on the reported 

score.  Alternatively, a uniform distribution assumes that we have no assurances that the reported 

rating is correct and that scores from multiple experts could range freely within the bounds set 

for the index score.   

In the case of ecosystem mapping wildlife habitat ratings, we question the metrics against 

which RSI index scores are assigned.  Past HSI projects have developed functional relationships 

between model variables and the life-history of the focal species (e.g., Prosser and Brooks 1998, 

Uhman et al. 2001).  Shrub height, for example, might be included as a model component 

because it provides security cover or nesting habitat.  Biogeoclimatic ecosystem classification, 

site series, structural stage, and site modifier may be useful for identifying plant associations, but 

they only serve as vague proxies for factors that dictate the distribution and population dynamics 

of caribou.  Published habitat studies can guide with the identification of ecologically relevant 

RSI variables.   

Results of our work suggest that variation in expert opinion can have dramatic effects on 

model predictions and ultimately conservation and management actions.  Assuming that 

variation in expert opinion was uniformly distributed, we recorded a maximum 85% reduction in 

the area of high-quality habitat.  Differences were less extreme using the triangular distribution, 

but still notable.  Uncertainty and sensitivity analysis are rarely applied to habitat suitability 

models; however, in agreement with our findings Bender et al. (1996) reported high uncertainty 
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and overlapping confidence intervals for an HSI of forest types occupied by gray squirrel 

(Sciurus carolinensis).  They assumed static HSI values and instead considered uncertainty in 

ecological inputs.  A logical extension of their simulations would have been a sensitivity analysis 

to identify input parameters with the strongest impact on model uncertainty.  Such post hoc 

analyses are essential for model and data improvement.  For our ecosystem unit analyses, BEC 

and site series were the most influential parameters.  Collapsing the number of BEC and site 

series classes, would reduce variation in index scores and model uncertainty. 

Study-wide uncertainty analysis suggest that in the absence of uncertainty, experts 

consistently over estimated the area of high-quality habitats (Table 2).  Apparent bias is an 

artifact of the truncated range of possible scores, 0 – 1, and the multiplicative model.  A low 

value for any one of the four constituent variables (BEC, site series, structural stage, site 

modifier) dictates the final RSI and a maximum value of 1 prevents the inclusion of a 

compensatory score.  Given the extreme sensitivity of the final RSI to just one low score, results 

suggest that wildlife habitat ratings for high-quality habitats are potentially underrepresented.  

Furthermore, the probability of misclassification will increase with model complexity (i.e., the 

number of variables).  Combining scores with a geometric mean would reduce the overall 

influence of a single low value, but continue to render a polygon unsuitable if an ecological 

condition necessary for animal occupancy was not satisfied.  

Uncertainty in RSI scores revealed that following a six-class rating system most habitat 

polygons could degrade or improve in ranking by one class.  Regardless of distribution or 

method of combining decile, relatively few habitat polygons maintained their initial ranking 

following the inclusion of uncertainty.  Magnitude of development impact and conservation 

objectives for the focal species will determine the significance of a one- or two-class change in 

ranking.   

Alternative Approaches 
The success of model-based planning will be best informed by several approaches using 

as much area-specific data as are available.  Models that predict species distribution are an 

important tool for understanding ecological processes and patterns and for guiding the 

conservation and management of plants and animals (Raxworthy et al. 2003). Once an effective 

model is identified, results provide a measure of the importance of ecological variables that 
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correlate with species distribution and in some cases abundance (Boyce and McDonald 1999, 

Treves et al. 2004). Because model results can be applied to digital spatial data to produce maps 

representing the likelihood of species occurrence (Carroll et al. 2001), they are useful tools to 

inform resource planning. The absolute or relative likelihood of occurrence then serves as a 

metric to rank habitats for conservation initiatives such as habitat restoration, enhancement or 

protection (Johnson et al. 2004).  

Numerous approaches are available for predicting and mapping species occurrence and 

important habitats. Quantitative techniques range from the suite of generalized linear models to 

rule-based methods (Guisan and Zimmermann 2000). Although there are many types of 

distribution models, most are dependent on two sources of data: an unbiased and precise sample 

of species locations and an accurate sampling or maps of environmental data that correlate with 

species distribution. Depending on the species, ecologically plausible variables could represent 

vegetation, soil parameters, topography, human disturbance, and inter-specific interactions 

(Manly et al. 2002). 

Arbitrary decisions during the modeling process, and error and bias in requisite data, can 

reduce predictive power or lead to incorrect inferences and maps of species distribution and 

important habitats (Elith et al. 2002). A model that poorly reflects actual species-environment 

relationships will not enlighten our understanding of ecological processes and patterns and might 

result in misplaced resources or harmful conservation and management actions (Loiselle et al. 

2003). Although modelers and practitioners often are aware of potential sources of error, bias, 

and variation during model construction and use, sources of uncertainty have largely been 

ignored on the grounds that appropriate evaluation techniques do not exist (Openshaw 1989). 

This is an incorrect assumption. In the case of species distribution models, researchers have 

evaluated and discussed the predictive performance of a number of models (Pearce and Ferrier 

2000, Manel et al. 2001, Boyce et al. 2002, Loiselle et al. 2003); the sensitivity, uncertainty, and 

efficacy of expert-based approaches (Pearce et al. 2001, Clevenger et al. 2002, Dettki et al. 2003, 

Johnson and Gillingham 2004); model performance relative to factors of scale, natural variation, 

and model design (Karl et al. 2000, Gutzwiller and Barrow 2001, Seoane et al. 2004); and the 

influences of error and bias in geographic information system (GIS) data (Stoms et al. 1992, 

Frair et al. 2004, Gu and Swihart 2004). Although we have witnessed a recent surge in the use 

and evaluation of species distribution models and requisite data, we are unaware of any work that 
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provides a comprehensive comparison of the relative sensitivity of model predictions to multiple 

sources of bias and error and alteration in model design.  

We performed a sensitivity analysis for one type of species distribution model, a resource 

selection function (RSF), that is formulated using logistic regression (Manly et al. 2002) and is 

widely use for mapping habitat selection by vertebrates.  Using these sensitivity analyses we can 

make several broad recommendations1. First, the interpretations of RSF species distribution 

models can be confounded by error and bias in the dependent and independent variables and 

differences in model design. Conclusions are most sensitive to the strict interpretation of 

coefficients when compared to prediction success and categorical maps of habitat quality. 

Second, assuming that inherent error and bias in our data had a linear effect on coefficient 

values, we suggest that species location error should be of concern when it approaches 200 m, 

efforts should be undertaken to rectify sampling bias when it exceeds a total location loss across 

all habitats of 35%, and thematic misclassification in maps may affect model outcomes following 

a 10% reduction of area for highly selected types. Recommendations are slightly more liberal if 

model results are used to map and rank habitats, but interactions between the various sensitivity 

factors could lead to much more severe impacts on the conclusions of such studies. Uncertainty 

inherent to model selection, non-representative sampling of study subjects, and positional error 

in resource maps are other factors that could further threaten the precision and accuracy of 

predictions. 

 We could find few examples of species distribution studies reporting the 

sensitivity of model data and uncertainty around predictions (but, see Stoms et al. 1992, 

Buckland and Elston 1993, Lindenmayer et al. 1995, Loiselle et al. 2003, Johnson et al. 2004). 

Although less onerous, most researchers also fail to evaluate and report anticipated or measured 

error and bias in species locations and maps or the implications of model choice. Our results 

confirm the recommendations of others: researchers should evaluate and report the data from 

which models are constructed, rectify the most sensitive sources, and conclude with an 

uncertainty analysis to determine the range of potential results (Burgman et al. 2001, Elith et al. 

2002, Regan et al. 2002). Sensitivity and uncertainty analyses are essential if models are to 

                                                 
1 Details of this work, can be found in Johnson, C,J., and Gillingham, M.P. Sensitivity of predictive species 
distribution models to imprecise data and model design. In Review. 
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enlighten our understanding of ecological processes and patterns or to provide useful guidance 

for management and conservation decision making. 

How well do habitat suitability index models perform compared to other methods of 

mapping habitat value?  In a final set of comparisons1, we used empirical data for woodland 

caribou to examine four species-distribution models: a qualitative habitat suitability index (like 

those used in the MK pre-tenure planning process), a quantitative resource selection function, 

Mahalanobis distance model (a multivariate dissimilarity statistic), and an ecological niche 

model.  Relative to the three quantitative models, the habitat suitability index was a poor 

predictor of caribou distribution during early winter (the season that we evaluated).  Specifically, 

the model was ineffective at identifying high-quality (class 1) habitats.  We assume that the poor 

correspondence with the validation data was a function of the bench marking procedure designed 

to rank habitats across the study area in relation to the best woodland caribou habitat in the 

province (Madrone Consultants, 1999a).  Such an approach allows planners and managers to 

assess the value of habitats among individual mapping projects, but it fails to recognize the 

relative significance of habitats within populations.  By contrast, the quantitative approaches that 

we explored were specific to the data used to build the models and may generalize poorly to 

other populations, time periods, or portions of a study area where animal locations are 

unavailable (Hobbs and Hanley, 1990; Knick and Rotenberry, 1998; Johnson et al. 2004). 

CONCLUSIONS 

There is evidence to suggest that, at some scales of management, expert-based habitat 

models are inferior to those developed using empirical data and statistical approaches (Pearce et 

al. 2001).  Although debate around the relative value of each system continues, formalized expert 

opinion will remain an important information source for some conservation and management 

problems (Johnson et al. 2004).  Our emphasis was not the comparison of empirical and expert-

based models.  Regardless of how coefficients are generated, model evaluation should be an 

integral component of the process.  Evaluation may include validation relative to some criteria, 

such as successful prediction, but would benefit greatly from uncertainty analysis and sensitivity 

analysis (Fielding and Bell 1997).  Even where models are considered accurate, uncertainty 

                                                 
1 For details see: Johnson, C,J., and Gillingham, M.P. Predictive accuracy and interpretation of mapped species 
distribution models. In Review. 
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analysis and sensitivity analysis can reveal situations under which prediction may be unreliable, 

aid with the identification and visualization of quantitative bounds for potential model outcomes, 

and identify flaws in model structure or areas of improvement for input data.  Framing results of 

modeling exercises in the context of uncertainty analysis and sensitivity analysis is crucial to 

understanding the reliability of wildlife habitat models.  These analyses, however, can only be 

done theoretically without some basis for the variability surrounding the opinions of the experts 

used to develop the models.  Therefore, we suggest that all model parameters estimated by 

experts should be accompanied by an estimate of error associated with these individual 

predictions.  Ideally this would be based on canvassing multiple experts for each parameter, but 

at the very least should consist of a single expert identifying the error likely associated with each 

prediction. 

RECOMMENDATIONS 

Based on our work we offer the following recommendations: 

1. Tremendous effort has gone into the BEC, whether based on TEM or PEM 

information – we need to make the most of those data, but we also need to recognize 

their limitations with respect to understanding vertebrate distributions.  Models based 

on just vegetation maps lack mechanistic relationships and should be treated with 

extreme caution when they are used to make spatially explicit predictions of habitat 

use. 

2. No landscape is static, particularly one under industrial development.  WHR models 

are static and, therefore, need to be continually updated.  Ideally, managers need these 

types of models to help interactively plan disturbances/perturbations.  For example, if 

a road is build into a drainage then the value of the habitat for a species changes.  

Future efforts should be focused towards using these models as interactive, scenario-

planning tools, rather than to make landscape-level decisions on models that do not 

include planned and cumulative effects. 

3. There is no perfect model, but our confidence increases when different approaches 

lead us to the same conclusions.  The current requirement that all contracted wildlife 

habitat rating models in BC must follow a single standard stifles this approach.  
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Moreover, the ‘required’ process is not adequate nor does it adequately capture, or 

portray, the uncertainty upon which they are based in the final products.  Parallel and 

alternative approaches need to continue to be developed and approaches need to be 

thoroughly evaluated (including peer-reviewed) before they become standards on 

which long-term land-management decisions are based. 

4. A model should only be applied and evaluated if it has ecological relevance, the 

requisite data are available and reliable, and neither the data nor model violates 

statistical or ecological assumptions (Austin, 2002).  Once these criteria have been 

satisfied and the model constructed, numerous techniques are available for measuring 

the accuracy of predictions (Fielding and Bell, 1997; Manel et al. 2001) – this latter 

step must be taken to gain any confidence in the predictions of the model. 

5. Sensitivity and uncertainty analyses are a second level of investigation that can reveal 

the range of possible predictions and guide the improvement of model performance 

(Elith et al. 2002).  Numerous models might need to be employed before satisfactory 

results are achieved. 

6. Regardless of whether the model is based on qualitative or quantitative information, 

individuals developing the models must include information about the range of 

uncertainty surrounding every model input.  Without such information the 

consequences of the uncertainty cannot be evaluated relative to the model predictions. 
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